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The theory of media whose properties are derived from the variational principle termed 

“euclidean action” by E, and F. Cosserat is developed in the book by Appell [l]. The 
arguments of the integrand in the mathematical expression of this principle are entirely 

determined by the geometry of the space, In the general statical case, 21 independent 
kinematical elements occur in this function for euclidean space. Certain contemporary 
authors, & 31 and others reduce the number of arguments to 14 by imposing differential 
relations among some of them. In particular, the components of the displacement vector 
and the components of the curl of the displacement vector are examined, Proceeding 

from the last precondition of [4], the basic apparatus for solution of the two-dimensional 
problem of the theory of elasticity is given and used in the present paper. 

1, The rolution of ths two-dlmrnrionrl problem with the rid 
of the Airy and Mindlin :tre:# functionn. The components of the stresses 
and couple stresses may be expressed with the aid of two stress functions in the following 

way : 

where the function q is the usual Airy stress function and 9 is the stress function intro- 
duced by Mindlin. 



The stress functions must satisfy the following differential. equations [4]: 

v*rp z (I, v%# - p74q := 0 (12 z fj / G) (1.2) 

where l is a special elastic constant for a Cosserat material and has the dimensions of 

length, G is the shear modulus, and B is a modulus relating the curvature to the couple 
stress components according to the equations 
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We shall examine the rectangular region 

shown in Fig. 1. We Seek homogeneous solutions 
for this region in which the boundaries y = _t a 
are free of both stresses and couple stresses. 

Fig. 1 

about the z-axis ; and 

There are two types of solutions: 
1) Homogeneous solutions having force symmetry 

2) homogeneous solutions having force quantities which are antisymmetric with res- 

pect tc the s-axis. 

In what follows, we shall present homogeneous solutions of the second type. 

2, Homogsneour AOlUt!OIlA for A r8CtAtlgUlAP region, tW0 pArAl= 
161 aider of which 8x0 free of $ttdlle$ And coupls atr688alt The 
desired solution of the second type ~~ntisyrnrne~~ about the x-axis} can be constructed 

with the aid of the stress functions 

(2-l) 

(2.2) 

where C,, C, and B are arbitrary constants, From the condition that the stresses and 

couple stresses are zero on the boundaries y -r-z :-t_ a the following transcendental equa- 

tion is obtained : 

(2.3) 

This transcendental equation has an infinite number of roots. The components of the 
stresses and couple stresses are expressed bv the equations 
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The roots of the transcendental equation (2.3) depend on the elastic constant I for a 
Cosserat medium (it occurs in the expression for a)and on Poisson’s ratio v. For I + oo 

the couple stresses have the greatest effect; here in the limit @ = a and the transcen- 
dental equation (2.3) reduces to the form 

22a 
siIl 

6 for v = 0.3 (2.5) 

The other extreme case, when I = 0, leads to the transcendental equation fo: the 

symmetric (classical) theory of elasticity without couple stresses [5], namely 

2la l  

sin= (2.6 ) 
This equation has only complex roots (except for the root at zero). The first two 

roots of the transcendental equation (2.5) for Y = 0.3 are real and the remaining ones 

are complex. We give the first twelve roots below. 

2Ctitl = 2Tk + 2tki = Z + iy 

z 2 3 4 

sz3.835 5.226 10.863197 17.172427 
y=o 0 -1.2104395 -1.7187154 

5 6 7 8 

x=23.472110 29.766339 36.058627 42.348509 
y = -2.0446282 - 2. 2575990 --2.4820034 -2.6442697 

9 10 11 12 

x = 48.637078 54.924699 62.211611 67.497976 
y=-2. 7836203 - 2.9057763 -3.0145427 -3.1125788 

The transcendental equation (2.3) has complex roots and, therefore, the solution given 
by Eqs. (2.4) are in complex form. The transformation to the real form of the solution 

is accomplished by considering that the conjugate roots also satisfy the transcendental 
equation. By combining the two variants of the expressions (2.4) for the system of com- 

plex conjugate roots and introducing complex conjugate arbitrary constants, we obtain 

the desired solutions in real form. Thus, to each complex root there correspond two 
arbitrary real constants. 

3. Repre#entatlon of the tolution in real form ; the boundary 
value problem for two loaded edge, of 8 rectrngulrr region. We 
represent the solution in real form corresponding to the transcendental equation (2.5). 
The stre.ss functions for this case are 



828 L. N. Ter-~rti~h’ian 

(3.1) 
+=-4(1- y) a z [a,P, (T Y) - M?,(T Y)l 

k 

where a k, b k are arbitrary real constants corresponding to the k th root of the transcen- 

dental equation (T&Z), and R A (2, y), 8 k (z, Y), P k (5, Y), Q k (5, p) are real func- 

tions of their arguments corresponding to the same k th root. We now give the expressions 

for these functions 

R k (z, y) = - A k (Y,X, - YZX,) - Bk (YJ, + y&Q + 

+ (~/U) Y&I (~/U) Y& 

3 k (2, y) = BA (Y,x, - y, x,) - A k (yxx, + y,x~) + 

+ (!I/4 YJ, - (Y/4 Y&l 

Pk (5, y) = (A k + ck) (y,x, + y,&) + cB k + D k) cyax, - y4x3) - 

- (Y/4 YIX3 - w4 w, (3.2) 

Q k (5, y) = (A & + c,) (y,-& - Y&I) - cB k + D k) ty.Sx4 + y3x3) + 

+ (Y/4 y,x* + (Y/N YJ, 

where sin 2r, 

Ak = 2(sinzrl,ch2ta+cosZrash2th.) * 
C&E rt 

r;-ktk (3.3) 

sh 25 

Bk= 2(sin2rk~h2tk+cos2rksh2tk) ’ 
II,= tk 

rri’ -?- tk2 

x1 = ch -+s T, X --_ shrh’2 sin th.x 2 a a ’ 
XpshL+J$ 

The suess and couple stress components are expressed by the following equations : 

(3.4) 
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The arbitrary constants a k and b R are determined from the following boundary conditions: 
for x = b (force symmetry with respect to the y-axis) 

ox = o,* (Y), %v = %/* (Y), CL, = &Z”(Y) 

where these specified functions of y must satisfy the condition of antisymmetry with 
respect to the z-axis. 

A quite simple solution is obtained for the case of pure bending in plane strain or 

generalized plane stress. These cases are also hom~eneo~ solutions, inasmuch as two 
parallel edges of the region remain free. The case of pure bending in plane strain is 

obtained with the aid of the following two stress functions: 

cp= +is, +=--2(1-v)zm (3.5) 

The components of the stresses and couple stresses are then 

o, = BY, LI, = 0, %Kc - - 0, rXtrar = 0 

&/ = 0, FX = - 2 (1 - Y) 120 (3.6) 

The couple stresses are uniformly distributed with depth (along y). The constant D 
is determined by equating the moment formed from the stresses and couple stresses to 
the bending moment &I 

whence 
--a --a 

D= 
M 

Z/‘sas [I + 6 (1 -v) +a”] (3.8) 

Determining the displacement by integration, we obtain the equation for the deflec- 
tion curve in the following form: 

u IzI=o = - 
M (1 - v2) 

2J&?J, (1 + Lm x27 L2 = 6(1 -v)P (3.9) 
Equation (3.9) shows that in the presence of couple stresses the flexural stiffness is 

increased to (1 -i_ La / aa) times the ordinary flexural stiffness for a medium correspond- 
ing to the classical theory. 

Experiments carried out by A. I. Ladatkin (graduate student in the department of struc- 
tural mechanics at the Leningrad Academy for Wood Technology) on steel strips indicate 
practically no increase in fiexural stiffness. Thus, for steel, the elastic characteristic 1 
for a Cosserat medium is very small and it is practically impossible to observe the couple 
stresses. This result is in complete accord with the observation in 163, referring to f7], 

that for engineering metals the elastic constant I for a Cosserat medium is of the order 

I z 0.1 mm. 
The work presented above shows that homogeneous solutions can be constructed for a 

rectangular region of a Cosserat material. These homogeneous solutions are useful in 

considering boundary value problems for rectangular regions loaded on the edges by dis- 
tributed forces and couples. 
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The Squire transformation, known in the theory of hydrodynamic stability [l, 21. makes 
it possible to reduce the problem of a plane-parallel isothermal motion with respect to 
spatial perturbations to a problem of plane perturbations. 

Formulas derived by Squire for the transformation of the Reynolds and the wave num- 
bers allow the derivation of complete information OR stability from a solution of the 
two-dimensional boundary value problem of Orr-Sommerfeld. It was found that plane 

perturbations are more dangerous because smaller (as compared to spatial perturbations) 
critical Reynolds numbers correspond to them. 

The problem becomes more complicated in the case of a nonisothermal plane-parallel 
flow. The stability of a plane Poisuille flow between horizontal parallel planes heated 
to different temperatures was considered in [3]. A ~ansfor~tion similar to that of 

Squire is applicable in this case also, but contrary to the isothermal case, the spatial per- 

turbations at certain specific values of parameters are here relatively more dangerous. 

The stability relative to spatial perturbations of free 
stationary convective motions (due to temperature 

nonuniformi~) between infinite parallel planes, heated 
to different temperatures and arbitrarily orientated in 

the gravitational fieid. is considered below (Fig. 1). 
Transformations of the Grashof and wave numbers, 

and of the angle of the layer with the vertical are 
derived, thus reducing the problem of stability with 
respect to normal spatial perturbations to the equiva- 

lent problem of plane perturbations. As the result of 
these transformations together with stability investi- 
gations with respect to plane perturbations [4], diagrams 
of convective flow stability with respect to three- 
dimensional perturbations were obtained. 


